数学家哈密顿的故事:玻洛汉姆桥上的数学发现

爱尔兰的都柏林市有一座名叫玻洛汉姆的桥。至今,桥头仍立着一块石碑,碑文刻的是:“1843年10月16日,当威廉·哈密顿经过此桥时,他天才地发现了四元数的乘法基本公式。”人们经过这里,都要驻足观看碑文,缅怀哈密顿对科学的伟大贡献。

哈密顿,1805年生于爱尔兰首府都柏林。他的父亲是一位律师兼商人,母亲是名门小姐,父母都很有才华。但是,到他14岁时,双亲都不幸相继去世。从此,他的叔叔詹姆士·哈密顿成了他的监护人。詹姆士是一位精通多种语言的专家,哈密顿从小就受其影响,在语言上得到了早期发展。正是早期的语言发展,提高了他的逻辑思维能力,为他在数学的成就奠定了基础。

12岁时,哈密顿读完了《几何原本》,接着,又读完了法国数学家克莱罗的《代数基础》。13岁时,从美国来了一位数学神童。于是,两位神童互相切磋,取长补短,使他在数学上的兴趣大增。17岁时,哈密顿就掌握了微积分,并学会了计算日食和月食的数理天文学。18岁时,他参加了都柏林三一学院的入学考试,在100多名考生中,他以第一名的成绩被录取。

1827年,22岁的哈密顿大学还没有毕业,就写成了《光线系统理论》的论文。这篇论文为几何光学的建立奠定了素材基础,并且引入了所谓光学的物征函数。后来,哈密顿又对该论文作了三个补充,从数学理论推演出,在双轴晶体中按某一特殊方向传播的光线,将产生折射光线的一个圆锥。这个论点后来被光学实验证实了。

当时学院里有一位很有影响的天文学教授叫布瑞克莱,他十分欣赏哈密顿的才华。1827年,布瑞克莱宣布辞去都柏林三一学院天文学教授的职位。他极力推荐,并说服校方,年仅22岁的哈密顿大学还没毕业,就成了布瑞克莱的继承人,成为天文学教授。与此同时,哈密顿又荣获了爱尔兰皇家天文学家的称号。

但是,哈密顿的志向不在天文学上,他全力以赴地钻研数学。1828年开始,他就着手研究四元数。四元数是实数、复数这个数系的发展,是超复数的一种,即属于四维矢量。用现代术语来说,它是一个线性代数的组成部分。

然而,经过十几年的苦心钻研,哈密顿仍然没有成功。1843年,已经是他研究四元数的15个年头了。这年的10月16日黄昏,哈密顿的妻子见丈夫整日埋头书堆,劳累不堪,于是费了好大劲才把他劝动,拉他外出散步。

当时秋高气爽,景色宜人。哈密顿在妻子的陪同下,漫步在皇家护城河畔的林荫道上。一阵阵秋风吹来,带着成熟的果香。哈密顿贪婪地呼吸着河畔清新的空气,不禁心旷神怡。他暂时忘了他醉心的数学题目,陶醉在大自然之中。

他们夫妻俩走上了玻洛汉姆桥,驻足桥上,望着暮色中的街景桥影,哈密顿的大脑思维突然再度活跃起来,闪光、跳荡、寻觅、联想……突然,他的思维大门一下子打开了,智慧的冲击波冲破了以往的障碍束缚,他一下子悟出了四元数运算的奥秘。他立刻掏出随身携带的笔记本,把他头脑中闪光的要点迅速记录下来。追求15年之久的四元数研究目标,终于在玻洛汉姆桥上找到了它的解法。哈密顿唯恐思路中断,急忙拉起他的夫人往家里跑去,这时,其他散步的男女老少都用奇异的目光看着这一对怪人。

回到家里,哈密顿把自己关进书房,一连几天不肯出来,甚至连饭都得让人送进去。最后,他终于从数百页演算纸里,抄清出了一篇极有价值的论文。

1843年11月,哈密顿在爱尔兰科学院宣布发现“四元数”,从而轰动了当时的数学界。四元数的发现,有力地推动了向量代数的发展。过去,复数理论只可用于平面向量,而空间向量问题则要用四元数向量部分来解决。哈密顿还把四元数引入微积分,定义了描述函数的数量或方向两个方面的变化的一系列概念。例如“梯度”、“旋量”等,成为研究物理学、工程学的重要计算工具。

10年之后,哈密顿写成了《四元数讲义》,并于1857年发表。当时著名的物理学家麦克斯韦正在研究电和磁,他苦于无法描述电磁运动及其变化规律。电和磁都是带有方向性的量。要弄清电磁运动的规律,必须首先从数学方法上找到解决的途径。麦克斯韦曾长期用复数向量处理,却一直得不到正确结果。当哈密顿四元数问世后,终于使麦克斯韦走出困境,使他的电磁研究获得了成功,并得出了“麦克斯韦方程组”,预言了电磁波的存在。

哈密顿深知四元数在科学上的重大意义。于是,在他生命的最后20多年中,一直倾注全力进行研究。他预感到,四元数的应用将在物理界引起巨大的变革。可惜的是,在这种变革没有到来之际的1865年9月2日,他因为慢性酒精中毒而离开了人间,终年60岁。

 

 

版权声明:本篇文章(包括图片)来自网络,由程序自动采集,著作权(版权)归原作者所有,如有侵权联系我们删除,联系方式(QQ:452038415)。http://www.lnzdy.com/883.html
返回顶部