数学家:数学成就突出的秦九韶

秦九韶是南宋时期官员、数学家,与李冶、杨辉、朱世杰并称“宋元数学四大家”。他精研星象、算术、营造之学,完成著作《数书九章》,取得了具有世界意义的重要贡献。

秦九韶最重要的数学成就是“大衍总数术”,即一次同余组解法,还有“正负开方术”,即高次方程数值解法。这些成果在中世纪世界数学史上占有突出的地位。

在楚汉战争中,有一次,刘邦手下大将韩信与楚王项羽手下大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是韩信整顿兵马也返回大本营。

就在汉军行至一山坡时,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。

韩信兵马到坡顶,见来敌不足500骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。

韩信马上向将士们宣布:我军有1073名勇士,敌人不足500人,我们居高临下,以众击寡,一定能打败敌人。

汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”、“神机妙算”,于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步进逼,楚军乱作一团。

交战不久,楚军果然大败,落荒而逃。

在这个故事中,韩信能迅速算出有1073名勇士,其实是运用了一个数学原理。他3次排兵布阵,按照数学语言来说就是:一个数除以3余2,除以5余3,除以7余2,求这个数。

对于这类问题的有解条件和解的方法,是由宋代数学家秦九韶首先提出来的,被后世称为“中国剩余定理”。

秦九韶是一位非常聪明的人,处处留心,好学不倦。通过这一阶段的学习,他成为一位学识渊博、多才多艺的青年学者。时人说他“性极机巧,星象、音律、算术,以至营造等事,无不精究”,“游戏、毬、马、弓、剑,莫不能知。”

秦九韶考中进士后,先后担任县尉、通判、参议官、州守、同农、寺丞等职。他在政务之余,对数学进行虔心钻研,并广泛收集历学、数学、星象、音律、营造等资料,进行分析、研究。

秦九韶在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了闻名的巨著《数书九章》。全书共列算题81问,分为9类,每类9个问题,不但在数量上取胜,重要的是在质量上也是拔尖的。

《数书九章》的内容主要有:大衍类,包括一次同余式组解法;天时类,包括历法计算、降水量;田域类,包括土地面积;测望类,包括勾股、重差;赋役类,包括均输、税收;钱谷类,包括粮谷转运、仓窖容积;营建类,包括建筑、施工;军族类,包括营盘布置、军需供应;市物类,包括交易和利息。

《数书九章》系统地总结和发展了高次方程数值解法和一次同余组解法,提出了相当完备的“三斜求积术”和“大衍求一术”等,达到了当时世界数学的最高水平。

秦九韶的正负方术,列算式时,提出“商常为正,实常为负,从常为正,益常为负”的原则,纯用代数加法,给出统一的运算规律,并且扩充到任何高次方程中去。

秦九韶所论的“正负开方术”,被称为“秦九韶程序”。世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则。

此项成果是中世纪世界数学的最高成就,比1819年英国人霍纳的同样解法早五六百年。

秦九韶还改进了一次方程组的解法,用互乘对减法消元,与现今的加减消元法完全一致;同时它又给出了筹算的草式,可使它扩充到一般线性方程中的解法。

在欧洲最早是1559年法国布丢给出的,比秦九韶晚了300多年。布丢用不很完整的加减消元法解一次方程组,而且理论上的完整性也逊于秦九韶。

我国古代求解一类大衍问题的方法。秦九韶对此类问题的解法作了系统的论述,并称之为“大衍求一术”,即现代数论中一次同余式组解法。

这一成就是中世纪世界数学的最高成就,比西方1801年著名数学家高斯建立的同余理论早500多年,被西方称为“中国剩余定理”。秦九韶不仅为中国赢得无上荣誉,也为世界数学作出了杰出贡献。

秦九韶还创用了“三斜求积术”等,给出了已知三角形三边求三角形面积公式。还给出一些经验常数,如筑土问题中的“坚三穿四壤五,粟率五十,墙法半之”等,即使对现在仍有现实意义。

秦九韶还在“推计互易”中给出了配分比例和连锁比例的混合命题的巧妙且一般的运算方法,至今仍有意义。

《数书九章》是对我国古典数学奠基之作《九章算术》的继承和发展,概括了宋元时期我国传统数学的主要成就,标志着我国古代数学的高峰。其中的正负开方术和大衍求一术长期以来影响着我国数学的研究方向。

秦九韶的成就代表了中世纪世界数学发展的主流与最高水平,在世界数学史上占有崇高的地位。

德国著名数学史家、集合论的创始人格奥尔格·康托尔高度评价了大衍求一术,他称赞发现这一算法的中国数学家是“最幸运的天才”。

美国著名科学史家萨顿说道:

秦九韶是他那个民族,他那个时代,并且确实也是所有时代最伟大的数学家之一。

版权声明:本篇文章(包括图片)来自网络,由程序自动采集,著作权(版权)归原作者所有,如有侵权联系我们删除,联系方式(QQ:452038415)。http://www.lnzdy.com/118.html
返回顶部